
      MIDI I/O and Visual Custom Controls
When you add a custom control to your project, its icon is displayed in the Toolbox.    You
can select the custom control by clicking on its icon.   
The toolbox icons for the custom controls in this package are listed below:

      Help for Horizontal Indicator VBX
Properties Events

Description
Put description here.

File Name
HINDIC.VBX

Object Type
HIndicator

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory.    This control
has version information built into it.    So, during installation, you should ensure that you are
not overwriting a newer version.

Properties
All of the properties that apply to this control are in this
table.    Properties that have special meaning for this
control or that only apply to this control are marked
with an asterisk (*).

BackColor *ItemBackColor *Max
*BevelInner *ItemCount1 *Min
*BevelOuter *ItemCount2 Name
*BevelWidth *ItemCount3 Parent
*Border *ItemForeColor1 Tag
*BorderWidth *ItemForeColor2 *ThreeD
Enabled *ItemForeColor3 Top
Height Left *Value
hWnd *LinkControl Visible
Index *LinkProperty Width

Value is the default value for the control.

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

Click
DblClick

      Help for Horizontal Slider VBX
Properties Events

Description
Put description here.

File Name
HSLIDE.VBX

Object Type
HSlider

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory. This control has
version information built into it.    So, during installation, you should ensure that you are not
overwriting a newer version.

Properties
All of the properties that apply to this control are in this
table.    Properties that have special meaning for this
control or that only apply to this control are marked with
an asterisk (*).

BackColor Left *TickColor
*BevelInner *LinkControl *TickCount
*BevelOuter *LinkProperty *TickLength
*BevelWidth *Max *TickMarks
*BorderWidth *Min *TickWidth
Enabled Name Top
*Gap Parent *TrackBevel
Height Tag *TrackWidth
hWnd *ThumbHeight *Value
Index *ThumbStyle Visible
*LargeChange *ThumbWidth Width

Value is the default value for the control.

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

*Change
GotFocus
LostFocus
MouseDown
MouseMove
MouseUp
*Scroll

      Help for Knob VBX
Properties Events

Description
This control displays a knob (round) that behaves like a slider or scroll bar.

File Name
KNOB.VBX

Object Type
Knob

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory.    This control
has version information built into it.    So, during installation, you should ensure that you are
not overwriting a newer version.

Properties
All of the properties that apply to this control are in this table.    Properties that have
special meaning for this control or that only apply to this control are marked with an
asterisk (*).

BackColor Height *LinkProperty *TickCount
*BevelWidth hWnd *Max *TickGap
*BorderWidth Index *Min *TickLength
Enabled *Indicator Name *TickWidth
FontBold *IndicatorColor Parent Top
FontItalic *IndicatorWidth *Radius *Value
FontName *KnobColor Tag Visible
FontSize *KnobStyle *TickCaption Width
FontStrikethru Left *TickCaptionColor
FontUnderline *LinkControl *TickColor

Value is the default value for the control.

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

*Change
GotFocus
LostFocus
MouseDown
MouseMove
MouseUp
*Scroll

      Help for MIDI File VBX
Properties Events

Description
The MIDIFILE VBX provides the Visual Basic programmer with an easy way to read and
write MIDI files,    both formats 0 (single track) and 1 (multiple-tracks) are supported.   
Using the MIDIFILE control you can modify existing MIDI files or create entirely new ones
from scratch.    You have complete control over and access to every type of midi message,
and you can insert, delete and modify tracks and messages at anytime.

File Name
MIDIFILE.VBX

Object Type
MIDIFile

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory.    This control
has version information built into it.    So, during installation, you should ensure that you are
not overwriting a newer version.

Properties
All of the properties that apply to this control are in this table.    Properties that have
special meaning for this control or that only apply to this control are marked with an
asterisk (*).

*Action *FractionalFrames *Mi *MsgText
Align *Frame Name *TicksPerFrame
*Buffer *FrameRate *Notated32nds *TicksPerQuarterNote
*Clocks *Hour *NumberOfTracks *TimeFormat
*Data1 Index *Numerator *Time
*Data2 Left *Second Top
*Denominator *Message *Sequence *TrackFormat
Enabled *MessageCount *Sf *TrackNumber
*Filename *MessageNumberTag
*Format *Minute *Tempo

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

*Error

      Help for MIDI Input VBX
Properties Events

Description
The MIDIIN VBX is used to receive MIDI messages from external MIDI devices.    Messages
can be retreived using Events or polling, and are time-stamped with millisecond accuracy.   
The MIDIIN VBX has an internal queuing mechanism so if messages arrive faster than your
application can handle them they will not be lost.

File Name
MIDIIN.VBX

Object Type
MIDIInput

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory.    This control
has version information built into it.    So, during installation, you should ensure that you are
not overwriting a newer version.

Properties
All of the properties that apply to this control are in this
table.    Properties that have special meaning for this
control or that only apply to this control are marked with
an asterisk (*).

*Action Enabled Name
Align *HMidiDevice *ProductID
*Buffer Index *ProductName
*Data1 Left *State
*Data2 *Message Tag
*DeviceCount *MessageCount *Time
*DeviceID *MessageEventEnable
*DriverVersion *ManufacturerID Top

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

*Error
*Message

      Help for MIDI Output VBX
Properties Events

Description
The MIDIOUT VBX gives you complete control over the contents and timing of MIDI
messages sent to either internal or external MIDI devices.    You can queue as many
messages as you like (within the constraints of available memory) before starting output,
or you can queue one or more messages prior to starting output and then add more as the
output proceeds.    Messages are scheduled for transmission at a time you specify relative
to the time that output is started.    As with the MIDIIN control timing has millisecond
resolution,    giving you the ability to precisely control the timing of sent MIDI messages.

File Name
MIDIOUT.VBX

Object Type
MIDIOutput

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory.    This control
has version information built into it.    So, during installation, you should ensure that you are
not overwriting a newer version.

Properties
All of the properties that apply to this control are in this
table.    Properties that have special meaning for this
control or that only apply to this control are marked with
an asterisk (*).

*Action Enabled *ProductID
Align *HasLRVolume *ProductName
*Buffer *HasVolume *State
*CanCache *HMidiDevice Tag
*Channels Index *Time
*Data1 Left Top
*Data2 *ManufacturerID *Voices
*DeviceCount *Message *VolumeLeft
*DeviceID *MessageTag *VolumeRight
*DeviceType Name
*DriverVersion *Notes

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

*Error
*MessageSent
*QueueEmpty
*Timer

      Help for Vertical Indicator VBX
Properties Events

Description
Put description here.

File Name
VINDIC.VBX

Object Type
VIndicator

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory.    This control
has version information built into it.    So, during installation, you should ensure that you are
not overwriting a newer version.

Properties
All of the properties that apply to this control are in this
table.    Properties that have special meaning for this
control or that only apply to this control are marked
with an asterisk (*).

BackColor *ItemBackColor *Max
*BevelInner *ItemCount1 *Min
*BevelOuter *ItemCount2 Name
*BevelWidth *ItemCount3 Parent
*Border *ItemForeColor1 Tag
*BorderWidth *ItemForeColor2 *ThreeD
Enabled *ItemForeColor3 Top
Height Left *Value
hWnd *LinkControl Visible
Index *LinkProperty Width

Value is the default value for the control.

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

Click
DblClick

      Help for Vertical Slider VBX
Properties Events

Description
Put description here.

File Name
VSLIDE.VBX

Object Type
VSlider

Distribution Note          When you develop and distribute an application that uses this
control, you should install the VBX into the users Windows SYSTEM directory.    This control
has version information built into it.    So, during installation, you should ensure that you are
not overwriting a newer version.

Properties
All of the properties that apply to this control are in this
table.    Properties that have special meaning for this
control or that only apply to this control are marked
with an asterisk (*).

BackColor Left *TickColor
*BevelInner *LinkControl *TickCount
*BevelOuter *LinkProperty *TickLength
*BevelWidth *Max *TickMarks
*BorderWidth *Min *TickWidth
Enabled Name Top
*Gap Parent *TrackBevel
Height Tag *TrackWidth
hWnd *ThumbHeight *Value
Index *ThumbStyle Visible
*LargeChange *ThumbWidth Width

Value is the default value for the control.

Events
All of the events that apply to this control are in
this table.    Events that have special meaning
for this control or that only apply to this control
are marked with an asterisk (*).

*Change
GotFocus
LostFocus
MouseDown
MouseMove
MouseUp
*Scroll

Action Property, MIDI File Control
See Also Example

Applies To
MIDI file

Description
Action to take using current DeviceID.

Usage
[form.][control.]Action[= integer]

Remarks
Setting this property causes an action to occur using current DeviceID.    The actions are:

Value Meaning
0 None.    No action
1 Open.    Open existing filename
2 Close.    Closes current file.    File contents are not changed by this

action.    See Save Changes.
3 New.    Creates new file specified by Filename.    An error will occur if the

file already exists.
4 Save Changes.    Saves the data to the current file, but does not close

it.
5 Clear Data.    The current MIDI file contents (if any) are discarded.
6 Insert Message.    Insert the message specified by Time, Message,

Data1, and Data2 immediately after the message given by
MessageNumber.    MessageNumber is incremented by one.

7 Modify Message.    Changes the current message using the values of
the Time, Message, Data1, and Data2 properties.

8 Delete Mesage.    Deletes the current message and loads the properties
from the next message.    Do not delete the last messag.   
MessageCount should always be greater than zero.

9 Insert Track.    Creates a new track and inserts it immediately after the
track given by TrackNumber.    TrackNumber is then incremented by
one.

10 Delete Track.    The current track is deleted and the next track becomes
the current track.    Do not delete the last track.    NumberOfTracks
should always be greater than zero

11 Save As.    Saves the current MIDIFile control contents into the file given
by Filename.    IMPORTANT NOTE: if Filename already exists it will be
overwritten.

Data Type
Integer

See Also
Properties:

Action (MIDI Input)
Action (MIDI Output)

Action Property, MIDI Input Control
See Also Example

Applies To
MIDI input

Description
Action to take using current DeviceID.

Usage
[form.][control.]Action[= integer]

Remarks
Setting this property causes an action to occur using current DeviceID.    The actions are:

Value Meaning
0 No action
1 Open device
2 Close device
3 Reset MIDI device.
4 Start MIDI input
5 Stop MIDI input
6 Remove current MIDI message from queue

Data Type
Integer

See Also
Properties:

Action (MIDI File)
Action (MIDI Output)

Action Property, MIDI Output Control
See Also Example

Applies To
MIDI Output

Description
Action to take using current DeviceID.

Usage
[form.][control.]Action[= integer]

Remarks
Setting this property causes an action to occur using current DeviceID.    The actions are:

Value Meaning
0 No action
1 Open device
2 Close device
3 Reset MIDI device.
4 Start MIDI output
5 Stop MIDI output
6 Queue message given by Message, Data1, and Data2 will be queued

for playing at Time milliseconds after output is started (Action = 4)
7 Immediate.    Sends the message given by Message, Data1, and Data2

immediately if output is started (Action = 5)
8 Timer.    Fires a Timer event when Time milliseconds have elapsed.   

This provides a high-resolution timer for you to use.    When the Timer
event is fired, it will pass back to you the contents of the MessageTag
property in effect at the time that action was set to Time.

9 Pauses the sending of queued message and stops the queue timer
clock.

Data Type
Integer

See Also
Properties:

Action (MIDI File)
Action (MIDI Input)

BevelInner Property
See Also Example

Applies To
Horizontal Indicator, Horizontal Slider, Vertical Indicator, Vertical Slider

Description
Determines the 3-D style of the border immediately surrounding the control.

Usage
[form.][control.]BevelInner[= integer]

Remarks
The value of this property determines the style of the inner border. This property may be
one of four values:

Value Description
0 Normal frame
1 Raised frame (3-D)
2 Inset frame (3-D)
3 Lowered frame (3-D)

Data Type
Integer (enumerated)

See Also
Properties:

BevelOuter
BevelWidth
BorderWidth

BevelOuter Property
See Also Example

Applies To
Horizontal Indicator, Horizontal Slider, Vertical Indicator, Vertical Slider

Description
Determines the 3-D style of the border (if any) surrounding the control.

Usage
[form.][control.]BevelOuter[= integer]

Remarks
The value of this property determines the style of the control's border. This property may
be one of four values:

Value Description
0 Normal frame
1 Raised frame (3-D)
2 Inset frame (3-D)
3 Lowered frame (3-D)

Data Type
Integer (enumerated)

See Also
Properties:

BevelInner
BevelWidth
BorderWidth

BevelWidth Property
See Also Example

Applies To
Horizontal Indicator, Horizontal Slider, Knob, Vertical Indicator, Vertical Slider

Description
Determines the width of the inner and outer borders (bevels).

Usage
[form.][control.]BevelWidth[= integer]

Remarks
The value of this property determines the width of the inner border (if any, see BevelInner)
and the outer border (if any, see Border and BevelOuter).    This is always measured in
pixels.
In the case of the Knob control, this determines the width of the bevel that surrounds the
knob.

Data Type
Integer

See Also
Properties:

BevelInner
BevelOuter
Border
BorderWidth

Border Property
See Also

Applies To
Horizontal Indicator, Vertical Indicator

Description
Determines if a border is used.

Usage
[form.][control.]Border[= integer]

Remarks
The value of this property determines the style of the border. If this property is set to
None, no border (inner or outer) is used.    This property may be one of the following
values:

Value Description
0 None
1 Single width

Data Type
Integer (enumerated)

See Also
Properties:

BevelInner
BevelOuter
BevelWidth
BorderWidth

BorderWidth Property
See Also Example

Applies To
Horizontal Indicator, Horizontal Slider, Knob, Vertical Indicator, Vertical Slider

Description
Determines the distance between the inner border and the outer border.

Usage
[form.][control.]BorderWidth[= integer]

Remarks
The value of this property determines the distance between the outer border (if any, see
Border and BevelOuter) and the inner border (if any, see BevelInner).    This is always
measured in pixels.
With the Knob control, this property determines the distance between the bevel on the
knob, and the outside edge of the indicator .

Data Type
Integer

See Also
Properties:

BevelInner
BevelOuter

Buffer Property
Example

Applies To
MIDI file, MIDI input, MIDI output

Description
Holding area for system exclusive messages.

Usage
[form.][control.]Buffer[= string]

Remarks
When sending or receiving a System Exclusive (Sysex) message the buffer property is
used to transfer the contents of the Sysex message.    The contents of Sysex messages is
determined solely by the MIDI device sending or receiving the sysex message.
It is important to note that there is a subtle difference between the way the Buffer
property is used in the MIDI File control and the MIDI In and Out controls.    When you
transmit a Sysex message to a midi device using the MIDI Out control you will need to
supply the sysex start and end bytes (&HF0 and &HF7) as message delimiters.    For
instance:

Dim sysexMsg as string
sysexMsg = &HF0 + GetRestOfSysexMessage() + &HF7

and when you receive a sysex message using the MIDI In control the start and end bytes
will be the first and last bytes in the string contained by the Buffer property.    However
when you read a sysex message from the MIDI File control the start and end bytes will NOT
be in the string contained by Buffer.    So to transmit a sysex message retreived from the
MIDI File control you should use something like:

sysexMsg = &HF0 + MIDIFile1.Buffer + &HF7

Data Type
String

CanCache Property

Applies To
MIDI output

Description
Specifies whether or not the current device supports patch caching.

Usage
[form.][control.]CanCache

Remarks
This property is read-only.

Data Type
Integer (boolean)

Channels Property

Applies To
MIDI output

Description
Specifies channels device supports.

Usage
[form.][control.]Channels(ChannelIndex)

Remarks
Elements in this array are True for each channel (specified by ChannelIndex) this device
will respond to.
This property is read-only.

Data Type
Integer

Clocks Property

Applies To
MIDI file

Description
Number of MIDI clocks in a metronome click.

Usage
[form.][control.]Clocks[= integer]

Remarks
Valid only after a Time Signature meta-event (&H58) becomes the current message.    Once
the values are loaded from a Time Signature meta-event they remain valid until another
Time Signature meta-event is encountered.

Data Type
Integer (0 - 255)

Data1 and Data2 Properties
See Also Example

Applies To
MIDI file, MIDI input, MIDI output

Description
MIDI message data bytes.

Usage
[form.][control.]Data1[= integer]
[form.][control.]Data2[= integer]

Remarks
The contents of Data1 and Data2 depend on the type of MIDI message being
sent/received.

Data Type
Integer (0-255)

See Also
Properties:

Message

Denominator Property
See Also

Applies To
MIDI file

Description
Denominator represents the denominator of a time signature as it would be notated.

Usage
[form.][control.]Denominator[= integer]

Remarks
Valid only when the current messages is a Time Signature meta-message (&H58).

Data Type
Integer (0 - 255)

See Also
Properties:

Numerator

DeviceCount Property
Example

Applies To
MIDI input, MIDI output

Description
Determines the number of MIDI devices.

Usage
[form.][control.]DeviceCount

Remarks
This property determines the number of MIDI devices available.    Note that the number of
input devices may not be the same as the number of output devices.
This property is read-only.

Data Type
Integer

DeviceID Property
See Also Example

Applies To
MIDI input, MIDI output

Description
Determines the device to use.

Usage
[form.][control.]DeviceID[= integer]

Remarks
In the MIDI output control this property ranges from -1 through DeviceCount - 1,    a value
of -1 represents the MIDI mapper and all other values represent a MIDI device.
In the MIDI input control this property ranges from zero through DeviceCount - 1,    with all
values representing MIDI devices.

Data Type
Integer

See Also
Properties:

DeviceCount

DeviceType Property
See Also

Applies To
MIDI output

Description
Type of device currently selected.

Usage
[form.][control.]Voices

Remarks
Specifies type of device selected by DeviceID.    Values are:

Value Meaning
0 MIDI hardware port
1 Square wave synthesizer
2 FM synthesizer
3 MIDI mapper

This property is read-only.
Data Type

Integer

See Also
Properties:

DeviceID

DriverVersion Property
See Also

Applies To
MIDI input, MIDI output

Description
Driver version of DeviceID.

Usage
[form.][control.]DriverVersion

Remarks
This property returns the driver version number for the device specified by DeviceID.    The
high-byte contains the major version number and the low-byte contains the minor version
number.
This property is read-only.

Data Type
Integer

See Also
Properties:

DeviceCount

Filename Property
See Also Example

Applies To
MIDI file

Description
Filename to open or create.

Usage
[form.][control.]Filename[= string]

Remarks
Filename to open or create.    See the Action property.

Data Type
String

See Also
Properties:

Action

Format Property

Applies To
MIDI file

Description
Determines the format of the current MIDI file.

Usage
[form.][control.]Format[= integer]

Remarks
Determines the format of the current MIDI file.

Value Meaning
0 Single track
1 One or more simultaneous tracks

Data Type
Integer

Frame and FractionalFrames Properties
See Also

Applies To
MIDI file

Description
Determines the offset of a message

Usage
[form.][control.]Frame[= integer]
[form.][control.]FractionalFrames = integer]

Remarks
These properties specifiy the offset.    They become valid when a SMPTE Offset meta-
message (&H54) becomes the current message and remain valid until either another
SMPTE Offset meta-message is received or until changed by your program.

Data Type
Integer (0-255)

See Also
Properties:

FrameRate

FrameRate Property
See Also

Applies To
MIDI file

Description
SMPTE frames per second.

Usage
[form.][control.]FrameRate[= integer]

Remarks
Determines the speed of frames.    Valid only when TimeFormat = 1 (SMPTE/MIDI).

Data Type
Integer

See Also
Properties:

Fractional Frames
Frame
Time
TimeFormat

Gap Property
See Also Example

Applies To
Horizontal Slider, Vertical Slider

Description
Determines the distance between the inside of the border and the tick marks.

Usage
[form.][control.]Gap[= integer]

Remarks
The value of this property determines the distance between the inner border and the tick
marks.    This property is measured in pixels.

Data Type
Integer

See Also
Properties:

BevelInner
BevelOuter
BevelWidth
BorderWidth

HasLRVolume Property
See Also Example

Applies To
MIDI output

Description
Specifies whether or not the current device supports separate left and right volume
control.

Usage
[form.][control.]HasLRVolume

Remarks
Specifies whether or not the current device (DeviceID) supports separate left and right
volume control.
This property is read-only.

Data Type
Integer (boolean)

See Also
Properties:

HasVolume

HasVolume Property
See Also Example

Applies To
MIDI output

Description
Specifies whether or not the current device supports volume.

Usage
[form.][control.]HasVolume

Remarks
Specifies whether or not the current device (DeviceID) supports volume.
This property is read-only.

Data Type
Integer (boolean)

See Also
Properties:

HasLRVolume

HMidiDevice Property
See Also

Applies To
MIDI input, MIDI output

Description
Handle of MIDI device.

Usage
[form.][control.]HMidiDevice

Remarks
Device handle of MIDI device specified by DeviceID.    Only valid while device is open.

Data Type
Integer

See Also
Properties:

Action (MIDI input)
Action (MIDI output)

Hour, Minute, and Second Properties

Applies To
MIDI file

Description
Determines the time offset of a message

Usage
[form.][control.]Hour[= integer]
[form.][control.]Minute[= integer]
[form.][control.]Second[= integer]

Remarks
These properties specifiy the current time offset.    They are valid only when the current
message is a SMPTE Offset meta-message (&H54).

Data Type
Integer (0-255)

Indicator Property
See Also Example

Applies To
Knob

Description
Determines what style of indicator to use for the knob.

Usage
[form.][control.]Indicator[= integer]

Remarks
The value of this property determines what kind of indicator to use for the knob.

Value Description
0 Spot
1 Line

Data Type
Integer (enumerated)

See Also
Properties:

IndicatorColor
IndicatorWidth
Value

IndicatorColor Property
See Also Example

Applies To
Knob

Description
Determines what color the indicator will be.

Usage
[form.][control.]IndicatorColor[= color]

Remarks
This property determines the color of the indicator on the knob.

Data Type
Color

See Also
Properties:

Indicator
IndicatorWidth

IndicatorWidth Property
See Also Example

Applies To
Knob

Description
Determines what width the indicator will be.

Usage
[form.][control.]IndicatorWidth[= integer]

Remarks
This property determines the width of the indicator on the knob.

Data Type
Integer

See Also
Properties:

Indicator
IndicatorWidth

ItemBackColor Property
See Also Example

Applies To
Horizontal Indicator, Vertical Indicator

Description
Determines the color of the background of the items.

Usage
[form.][control.]ItemBackColor[= color]

Remarks
This property specifies the color of the item backgrounds.    The items are filled with this
color when not "on" (i.e. filled with one of the ItemForeColors).

Data Type
Color

See Also
Properties:

ItemForeColor1
ItemForeColor2
ItemForeColor3

ItemCount1, ItemCount2, and ItemCount3 Properties
See Also Example

Applies To
Horizontal Indicator, Vertical Indicator

Description
Determines the number of items in the indicator.

Usage
[form.][control.]ItemCount1[= integer]
[form.][control.]ItemCount2[= integer]
[form.][control.]ItemCount3[= integer]

Remarks
This property specifies the number of the items in the control.    These properties must be
greater than or equal to zero.    If all three are zero, no items are displayed.
The first ItemCount1 items are painted with ItemForeColor1.    The next ItemCount2 items
are painted with ItemForeColor2.    And, the remaining ItemCount3 items are painted with
ItemForeColor3.

Data Type
Integer

See Also
Properties:

ItemBackColor
ItemForeColor1
ItemForeColor2
ItemForeColor3
Max
Min
Value

ItemForeColor1, ItemForeColor2, and ItemForeColor3 Properties
See Also Example

Applies To
Horizontal Indicator, Vertical Indicator

Description
Determines the color of the selected items.

Usage
[form.][control.]ItemForeColor1[= color]
[form.][control.]ItemForeColor2[= color]
[form.][control.]ItemForeColor3[= color]

Remarks
This property specifies the color of the items when the are selected (this is dependent
upon the Min, Max, Value, and ItemCount properties).
The first ItemCount1 items are painted with ItemForeColor1.    The next ItemCount2 items
are painted with ItemForeColor2.    And, the remaining ItemCount3 items are painted with
ItemForeColor3.

Data Type
Color

See Also
Properties:

ItemBackColor
ItemCount1
ItemCount2
ItemCount3
Max
Min
Value

KnobColor Property
See Also Example

Applies To
Knob

Description
Determines the knob's color.

Usage
[form.][control.]KnobColor[= color]

Remarks
This property determines the color of the knob's face.

Data Type
Color

See Also
Properties:

KnobStyle

KnobStyle Property
See Also Example

Applies To
Knob

Description
Determines the knob's style.

Usage
[form.][control.]KnobStyle[= integer]

Remarks
This property determines the style of the knob.    Valid values are:

Value Description
0 Normal
1 Raised
2 Lowered
3 Textured

Data Type
Integer

See Also
Properties:

KnobColor

LargeChange Property
Applies To

Horizontal Slider, Vertical Slider
Description

Determines the how far the slider moves when clicked outside the thumb..
Usage

[form.][control.]LargeChange[= integer]
Remarks

The value of this property determines how far the thumb moves when the control is clicked
outside the thumb and near the track.

Data Type
Integer

VolumeLeft Property
Example

Applies To
MIDI output

Description
Sets left side volume

Usage
[form.][control.]VolumeLeft[= integer]

Remarks
Sets the volume for the left channel of DeviceID.    This value must range from 0 to 32767. 
If HasLRVolume is False, setting this property sets both VolumeLeft and VolumeRight.
You should save the VolumeRight and VolumeLeft properties when you open a MIDI device
that supports volume control, and restore the properties just before you close the device.   
If you do not restore the properties the default volume for the MIDI device will be changed
system-wide.

Data Type
Integer (0-32767)

LinkControl and LinkProperty Properties
Applies To

Horizontal Indicator, Horizontal Slider, Knob, Vertical Indicator, Vertical Slider
Description

Sets up link to another control.
Usage

[form.][control.]LinkControl
[form.][control.]LinkProperty

Remarks
These properties set up a link with another control.    When the Value property changes,
the control sends the new value to the control and property specified by these properties.   
If the other control is one of the controls in this package (i.e., Horizontal Indicator,
Horizontal Slider, Knob, MIDI File, MIDI Input, MIDI Output, Vertical Indicator, or Vertical
Slider), the current control's Value property will be updated when the other control's
property changes.
At design-time, be sure to set the LinkControl property first.    The LinkProperty combo box
will display all of the valid properties for that control.
These properties are changable at design-time, and read-only at run-time.

Data Type
String

ManufacturerID Property
See Also

Applies To
MIDI input, MIDI output

Description
Manufacturer's ID for DeviceID.

Usage
[form.][control.]ManufacturerID

Remarks
This property returns the manufacturer's ID number for the device specified by DeviceID.
This property is read-only.

Data Type
Integer

See Also
Properties:

ProductID

Message Property
See Also Example

Applies To
MIDI file, MIDI input, MIDI output

Description
Message byte.

Usage
[form.][control.]Message[= integer]

Remarks
Part of the data sent/received.

Data Type
Integer (0-255)

See Also
Properties:

Data1 and Data2

MessageCount Property
Example

Applies To
MIDI file, MIDI input

Description
Number of messages available.

Usage
[form.][control.]MessageCount[= integer]

Remarks
As messages arrive at the MIDI Input control they are queued by the control.    Your
program can determine how many messages the MIDI Input control has queued by
examining this property.
There is (or at least should be) an End of Track message at the end of each MIDI track.   
When you create a new track using the MIDI File control an End of Track message is placed
in the track.    The MessageCount property is actually one less than the number of
messages since the End of Track message is not counted, cannot be accessed, and cannot
be deleted.

Data Type
Integer (long)

MessageEventEnable Property

Applies To
MIDI input

Description
Enables Message event.

Usage
[form.][control.]MessageEventEnable[= boolean]

Remarks
When this property is set to True, the Message event will be fired whenever messages are
available.    When this property is set to False, the Message event will not be fired.

Data Type
Integer (boolean)

MessageNumber Property
See Also Example

Applies To
MIDI file

Description
Specifies current message.

Usage
[form.][control.]MessageNumber[= long]

Remarks
Specifies the current message.    This must range from 1 to MessageCount.

Data Type
Integer (long)

See Also
Properties:

MessageCount

MessageTag Property
See Also Example

Applies To
MIDI output

Description
The MessageTag property allows you to associate a long integer value with each particular
MIDI message.    When a MIDI message with a non-zero MessageTag is sent the
MessageSent event will be fired.

Usage
[form.][control.]MessageTag[= long]

Remarks
Using the MessageTag property and MessageSent event you can sycnronize your program
with MIDI events of your choosing.

Data Type
Integer (long)

See Also
Events:

MessageSent

Mi Property
See Also

Applies To
MIDI file

Description
When Mi is set to 1 the current track is in a minor key, when set to 0 the current track is in
a major key.

Usage
[form.][control.]Mi[= integer]

Remarks
Valid when the current message is a Key Signature meta-message (&H59).

Data Type
Integer (0 - 255)

See Also
Properties:

Sf

Min and Max Properties
See Also

Applies To
Horizontal Indicator, Horizontal Slider, Knob, Vertical Indicator, Vertical Slider

Description
Determines the range of values for this control.

Usage
[form.][control.]Max[= integer]
[form.][control.]Min[= integer]

Remarks
These properties determine the range of values for the control in question.    If Max is set to
less than Min, then the range of values is swapped.

Data Type
Integer

See Also
Properties:

Value

MsgText Property
Example

Applies To
MIDI file

Description
String representing meta-event.

Usage
[form.][control.]MsgText

Remarks
Specifies the name of the meta event.

Value Meaning
1 Non-specific text string
2 Copyright notice
3 Sequence/track name
4 Instrument name
5 Lyric
6 Marker
7 Cue point
8-15 Undefined text string

This property is read-only.
Data Type

Integer

Notated32nds Property
See Also

Applies To
MIDI file

Description
The number of notated 32nd notes in a MIDI quarter-note (24 MIDI clocks).

Usage
[form.][control.]Notated32nds[= integer]

Remarks
Valid when the current message is a Time Signature meta-message (&H58).

Data Type
Integer (0 - 255)

See Also
Properties:

Clocks

Notes Property

Applies To
MIDI output

Description
Number of simultaneous notes the device may play.

Usage
[form.][control.]Notes

Remarks
Number of simultaneous notes (polyphony) that may be played by internal DeviceID.   
Always zero for MIDI ports.
This property is read-only.

Data Type
Integer

NumberOfTracks Property
See Also Example

Applies To
MIDI file

Description
Number of tracks available.

Usage
[form.][control.]NumberOfTracks[= integer]

Remarks
Current number of tracks available, this number will change as you insert and/or delete
tracks.

Data Type
Integer

See Also
Properties:

TrackNumber

Numerator Property
See Also

Applies To
MIDI file

Description
The numerator of the time signature as it would be notated.

Usage
[form.][control.]Numerator[= integer]

Remarks
Valid when the current message is a Time Signature meta-message (&H58).

Data Type
Integer (0 - 255)

See Also
Properties:

Denominator

ProductID Property
See Also

Applies To
MIDI input, MIDI output

Description
Product ID for DeviceID.

Usage
[form.][control.]ProductID

Remarks
This property returns the product ID number for the device specified by DeviceID.
This property is read-only.

Data Type
Integer

See Also
Properties:

ManufacturerID

ProductName Property

Applies To
MIDI input, MIDI output

Description
Product name for DeviceID.

Usage
[form.][control.]ProductName

Remarks
This property returns the product namefor the device specified by DeviceID.
This property is read-only.

Data Type
String

See Also
Properties:

DeviceID

Radius Property
Example

Applies To
Knob

Description
Determines what size of the knob.

Usage
[form.][control.]Radius[= radius]

Remarks
This property determines the size of the knob.    When the knob is sized at design-time, this
property is automatically scaled.

Data Type
Real

VolumeRight Property
Example

Applies To
MIDI output

Description
Sets right side volume

Usage
[form.][control.]VolumeRight[= integer]

Remarks
Sets the volume for the left channel of DeviceID.    This value must range from 0 to 32767. 
If HasLRVolume is False, setting this property does nothing.
You should save the VolumeRight and VolumeLeft properties when you open a MIDI device
that supports volume control, and restore the properties just before you close the device.   
If you do not restore the properties the default volume for the MIDI device will be changed
system-wide.

Data Type
Integer (0-32767)

Sequence Property

Applies To
MIDI file

Description
MIDI files may contain a Sequence Number meta-event at the beginning of a track and
before any nonzero delta-time events, and before any transmittable MIDI events.    The
Sequence Property is set to the value of the Seqence Number whenever the Sequence
Number meta-event is encountered.

Usage
[form.][control.]Sequence[= long]

Remarks
Sequence number is generally not useful in format 0 or 1 MIDI files.

Data Type
Integer (long)

Sequence Property

Applies To
MIDI file

Description
When reading/writing meta-event 0, this property contains the sequence number.

Usage
[form.][control.]Sequence[= long]

Remarks
When reading/writing meta-event 0, this property contains the sequence number.

Data Type
Integer

Sf Property
See Also

Applies To
MIDI file

Description
Sharps/Flats, number of sharps or flats in the current key. Values between 1 and 127
specify 1 or more sharps, values between 128 and 255 specify one or more flats, and 0
specficies the key of C.

Usage
[form.][control.]Sf[= integer]

Remarks
Valid when the current message is a Key Signature meta-message (&H59).

Data Type
Integer (0 - 255)

See Also
Properties:

Mi

State Property
SeeAlso Example

Applies To
MIDI input, MIDI output

Description
Current state of DeviceID.

Usage
[form.][control.]State

Remarks
Setting this property returns the state of DeviceID.    The states are:

Value Meaning
0 Closed
1 Open
2 Started
3 Stopped
4 Paused

This property is read-only.
Data Type

Integer

See Also
Properties:

Action (MIDI File)
Action (MIDI Input)
Action (MIDI Output)

Tempo Property
Example

Applies To
MIDI file

Description
Sets the tempo.

Usage
[form.][control.]Tempo[= long]

Remarks
Valid whenever the current message is a Tempo meta-event (&H51).

Data Type
Integer (long)

ThreeD Property
See Also

Applies To
Horizontal Indicator, Vertical Indicator

Description
Determines whether or not 3-D styles are used.

Usage
[form.][control.]ThreeD[= boolean]

Remarks
If this property is set to False, no 3-D style bevels are used.    If this property is set to True,
any bevel can be used.

Data Type
Integer (boolean)

See Also
Properties:

BevelInner
BevelOuter

ThumbHeight and ThumbWidth Properties
See Also Example

Applies To
Horizontal Slider, Vertical Slider

Description
Determines the size of the thumb.

Usage
[form.][control.]ThumbHeight[= height]
[form.][control.]ThumbWidth[= width]

Remarks
The value of these properties determine the size of the thumb.    These properties are
measured in twips.

Data Type
Real

See Also
Properties:

ThumbStyle

ThumbStyle Property
See Also Example

Applies To
Horizontal Slider, Vertical Slider

Description
Determines the style of the thumb.

Usage
[form.][control.]ThumbStyle[= integer]

Remarks
The value of this property determines the style of the control's border. This property may
be one of four values:

Value Description
0 Normal
1 Pointer up/left
2 Pointed down/right
3 Lined

Data Type
Integer (enumerated)

See Also
Properties:

ThumbHeight
ThumbWidth

TickCaption Property
See Also

Applies To
Knob

Description
Determines what captions will be on the tick marks.

Usage
[form.][control.]TickCaption(TickIndex)[= string]

Remarks
This property array specifies the text that's associated with each tick mark.    TickIndex is
numbered from 0 to (TickCount - 1), starting at the left-bottom of the knob and moving
around clock-wise.
You can set this property at design-time by selecting this property, and then pressing the
ellipsis button.    The dialog box that pops up lets you enter and edit captions.

Data Type
Integer

See Also
Properties:

TickCaptionColor
TickColor
TickCount
TickGap
TickLength
TickWidth

TickCaptionColor Property
See Also Example

Applies To
Knob

Description
Determines what color the tick caption text.

Usage
[form.][control.]TickCaptionColor [= color]

Remarks
This property sets the color of the tick captions.

Data Type
Color

See Also
Properties:

TickCaption
TickColor
TickCount
TickGap
TickLength
TickWidth

TickColor Property
See Also Example

Applies To
Horizontal Slider, Knob, Vertical Slider

Description
Determines what color the ticks will be.

Usage
[form.][control.]TickColor[= color]

Remarks
This property specifies the color of the tick marks.

Data Type
Color

See Also
Properties:

TickCaption
TickCaptionColor
TickCount
TickGap
TickLength
TickWidth

TickCount Property
See Also Example

Applies To
Horizontal Slider, Knob, Vertical Slider

Description
Determines how many tick marks there will be.

Usage
[form.][control.]TickCount[= integer]

Remarks
This property determines how many tick marks there will be.

Data Type
Integer

See Also
Properties:

TickCaption
TickCaptionColor
TickColor
TickGap
TickLength
TickWidth

TickGap Property
See Also Example

Applies To
Knob

Description
Determines the distance between the tick marks and the knob.

Usage
[form.][control.]TickGap[= integer]

Remarks
This property specifies the distance between the inside edge of the tick marks and the
outside edge of the knob.    This property is measured in pixels.

Data Type
Integer

See Also
Properties:

TickCaption
TickCaptionColor
TickColor
TickCount
TickLength
TickWidth

TickLength Property
See Also Example

Applies To
Horizontal Slider, Knob, Vertical Slider

Description
Determines the length of the tick marks.

Usage
[form.][control.]TickLength[= integer]

Remarks
This property specifies the length, in pixels, of the tick marks.

Data Type
Integer

See Also
Properties:

TickCaption
TickCaptionColor
TickColor
TickCount
TickGap
TickWidth

TickMarks Property
See Also

Applies To
Horizontal Slider, Vertical Slider

Description
Determines where the ticks will appear.

Usage
[form.][control.]TickMarks[= integer]

Remarks
This property where the tick marks will be.    The legitimate values are:

Value Meaning
0 No tick marks
1 Top for HSlider, Left for VSlider
2 Bottom for HSlider, Right for VSlider
3 Both

Data Type
Integer

See Also
Properties:

TickColor
TickCount
TickLength
TickWidth

TicksPerFrame Property

Applies To
MIDI file

Description
Determines the number of ticks in each frame.

Usage
[form.][control.]TicksPerFrame[= integer]

Remarks
Determines the number of ticks in each frame. Valid only when TimeFormat = 1
(SMPTE/MIDI).

Data Type
Integer

TicksPerQuarterNote Property
Example

Applies To
MIDI file

Description
Determines the number of ticks in each quarter note.

Usage
[form.][control.]TicksPerQuarterNote[= integer]

Remarks
Determines the number of ticks in each quarter note. Valid only when TimeFormat = 0
(ticks per quarter note).

Data Type
Integer

TickWidth Property
See Also Example

Applies To
Horizontal Slider, Knob, Vertical Slider

Description
Determines the width of the tick marks.

Usage
[form.][control.]TickWidth[= integer]

Remarks
This property determines the width of the tick marks.    This property is measured in pixels.

Data Type
Integer

See Also
Properties:

TickCaption
TickCaptionColor
TickColor
TickCount
TickGap
TickLength

Time Property
See Also Example

Applies To
MIDI file, MIDI input, MIDI output

Description
Time of message in ticks or milliseconds (see TimeFormat).

Usage
[form.][control.]Time[= integer]

Remarks
Time of message in ticks.    It is important to note that Time has a different meaning in the
MIDI input and output controls than it does in the MIDI file control.    MIDI input and output
times are always milliseconds elapsed time since the start of either recording or playback, 
while the MIDI file control always sets Time to the number of Ticks which elapse between
events.
For the MIDI input and MIDI output controls Time is always in milliseconds.   
With the MIDI file control the meaning of Time is defined by the contents of the MIDI
header values TicksPerQuarterNote and the Tempo meta-event value Tempo when
TimeFormat is 0 (Ticks per quarter note) or by FrameRate and TicksPerFrame when
TimeFormat is 1 (SMPTE).
When using TimeFormat 0 files you may need to convert between MIDI ticks and
milliseconds.    Since    Tempo gives the number of microseconds per MIDI quarter note the
number of beats per minute is given by:

Beats Per Minute = 60,000,000 / Tempo
The number of Milliseconds Per Tick is:

Milliseconds Per Tick = (Tempo / 1000) / TicksPerQuarterNote
When reading a MIDI file and playing it using the MIDI output control you can use the
Milliseconds Per Tick value to calculate the number of milliseconds between one event and
the next by using the following equation:

Millisecond Delay = Ticks between events * Milliseconds Per Tick
When reading MIDI messages from the MIDI input control you need to convert from
milliseconds to ticks,    you can use the following equation:

Ticks Per Milliseconds = (MIDIFile1.TicksPerQuarterNote / MIDIFile1.Tempo) * 1000
Then convert elapsed milliseconds to ticks like this:

Ticks between events = Milliseconds between events * Ticks Per Milliseconds
Data Type

Integer (long)

See Also
Properties:

TicksPerQuarterNote
Tempo

TimeFormat Property
See Also

Applies To
MIDI file

Description
Determines the method ot time-keeping used.

Usage
[form.][control.]TimeFormat[= integer]

Remarks
Determines the method ot time-keeping used.

Value Meaning
0 Ticks per quarter note (see TicksPerQuarterNote)
1 SMPTE/MIDI (see FrameRate and TicksPerFrame)

Data Type
Integer

See Also
Properties:

Time

TrackBevel Property
See Also Example

Applies To
Horizontal Slider, Vertical Slider

Description
Determines the 3-D style of the track.

Usage
[form.][control.]TrackBevel[= integer]

Remarks
The value of this property determines the style of the control's border. This property may
be one of four values:

Value Description
0 Normal track
1 Raised track (3-D)
2 Inset track (3-D)
3 Lowered track (3-D)

Data Type
Integer (enumerated)

See Also
Properties:

TrackWidth

TrackNumber Property
See Also Example

Applies To
MIDI file

Description
Currentl selected track.

Usage
[form.][control.]TrackNumber[= integer]

Remarks
Currently selected track.    Trakcs can be accessed at random by using this property.   
Tracks are numbered from 1 to NumberOfTracks.

Data Type
Integer

See Also
Properties:

NumberOfTracks

TrackWidth Property
See Also Example

Applies To
Horizontal Slider, Knob, Vertical Slider

Description
Determines the width of the track.

Usage
[form.][control.]TrackWidth[= integer]

Remarks
The value of this property determines the width of the track.    This property is measured in
pixels.

Data Type
Integer

See Also
Properties:

TrackBevel

Value Property
See Also

Applies To
Horizontal Indicator, Horizontal Slider, Knob, Vertical Indicator, Vertical Slider

Description
Specifies the current position of the control.

Usage
[form.][control.]Value[= integer]

Remarks
This property determines the current value of the control. This is the default property of
these controls.

Data Type
Integer

See Also
Events:

Change
Scroll

Properties:
LinkControl
LinkProperty
Max
Min

Voices Property

Applies To
MIDI output

Description
Number of voices supported by selected device.

Usage
[form.][control.]Voices

Remarks
Number of voices supported by internal MIDI (DeviceID).    Always zero for MIDI ports.
This property is read-only.

Data Type
Integer

Action Property Example, MIDI File Control
This subroutine shows how to perform a number of common tasks using the MIDIFile
controls Action property.

Sub MidiFileFun ()
 '
 ' Delete the current track
 '
 MIDIFile1.Action = MIDIFILE_DELETE_TRACK
 '
 ' Create a new track
 '
 MIDIFile1.Action = MIDIFILE_INSERT_TRACK
 '
 ' Add a note-on message (Ch. 3, C3, forte, time 0) to the new track
 '
 MIDIFile1.Message = &H92
 MIDIFile1.Data1 = &H60
 MIDIFile1.Data2 = &H96
 MIDIFile1.Time = 0
 MIDIFile1.Action = MIDIFILE_INSERT_MESSAGE
 '
 ' Add a note-off message (Ch. 3, C3, standard, 50 ticks later)
 '
 MIDIFile1.Message = &H82
 MIDIFile1.Data1 = &H60
 MIDIFile1.Data2 = &H64
 MIDIFile1.Time = 50
 MIDIFile1.Action = MIDIFILE_INSERT_MESSAGE
 '
 ' Backup to first message and change its start time (moving to a message
 ' reloads the message so we only need to modify the time property)
 '
 MIDIFile1.MessageNumber = 1
 MIDIFile1.Time = 25
 MIDIFile1.Action = MIDIFILE_MODIFY_MESSAGE
 '
 ' Save the file using a new name
 '
 MIDIFile1.Filename = newname.mid
 MIDIFile1.Action = MIDIFILE_SAVE_AS
 '
 ' Close the file
 '
 MIDIFile1.Action = MIDIFILE_CLOSE
End Sub

Action Property Example, MIDI Input Control
The following subroutine shows a sample MIDIInput_Message event handler.    All of the
available messages are read and output using the MIDI output control,    this provides a
MIDI-thru capability.

Sub MIDIInput1_Message()
Dim Message As Integer
Dim Data1 As Integer
Dim Data2 As Integer

Do While (MIDIInput1.MessageCount > 0)
'
'This is the incoming MIDI data
'
Message = MIDIInput1.Message
Data1 = MIDIInput1.Data1
Data2 = MIDIInput1.Data2
'
' Tell MIDIOutput1 to send the MIDI data
'
MIDIOutput1.Message = Message
MIDIOutput1.Data1 = Data1
MIDIOutput1.Data2 = Data2
MIDIOutput1.Action = MIDIOUT_SEND
'
' Remove the input message
'
MIDIInput1.Action = MIDIIN_REMOVE

Loop
End Sub

Action Property Example, MIDI Output Control
The following subroutine shows a sample MIDIInput_Message event handler.    All of the
available messages are read and output using the MIDI output control,    this provides a
MIDI-thru capability.

Sub MIDIInput1_Message()
Dim Message As Integer
Dim Data1 As Integer
Dim Data2 As Integer

Do While (MIDIInput1.MessageCount > 0)
'
'This is the incoming MIDI data
'
Message = MIDIInput1.Message
Data1 = MIDIInput1.Data1
Data2 = MIDIInput1.Data2
'
' Tell MIDIOutput1 to send the MIDI data
'
MIDIOutput1.Message = Message
MIDIOutput1.Data1 = Data1
MIDIOutput1.Data2 = Data2
MIDIOutput1.Action = MIDIOUT_SEND
'
' Remove the input message
'
MIDIInput1.Action = MIDIIN_REMOVE

Loop
End Sub

Bevel Properties Example
In this example, the program shows what happens when you vary the bevels on the
controls. To try this example, paste the code into the Declarations section of a form that
contains a knob, a horizontal indicator, and a horizontal slider control.    Press F5.    Play
with the knob.

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 Knob1.Width = 3000
 Knob1.Height = 2000
 Knob1.Radius = 500
 Knob1.TickCount = 4
 Knob1.Min = 0
 Knob1.Max = 3
 Knob1.Value = 0
 Knob1.FontSize = 7
 Knob1.FontBold = False
 Knob1.FontName = "Arial"
 Knob1.FontSize = 7
 Knob1.TickCaption(0) = "None"
 Knob1.TickCaption(1) = "Raised"
 Knob1.TickCaption(2) = "Inset"
 Knob1.TickCaption(3) = "Lowered"

 HIndicator1.BackColor = &HC0C0C0

 HSlider1.TrackBevel = 0
 HSlider1.TrackWidth = 5
 HSlider1.BorderWidth = 4
End Sub

Sub Knob1_Scroll ()
 HSlider1.BevelInner = Knob1.Value
 HSlider1.BevelOuter = Knob1.Value
 HIndicator1.BevelInner = Knob1.Value
 HIndicator1.BevelOuter = Knob1.Value
End Sub

Buffer Property Example
In this example, a Sysex message is sent which resets the Roland SoundCanvas SC-88 to
General Midi mode.

Sub SetGMMode_Click ()
        Midioutput1.Buffer = Chr$(&HF0) + Chr$(&H7E) + Chr$(&H7F) + Chr$(9) + Chr$(1) +
Chr$(&HF7)
        Midioutput1.Message = &HF0
        Midioutput1.Action = MIDIOUT_SEND
End Sub

In this example the first and last bytes (&HF0 and &HF7) signal the beginning and end of a
Sysex message.    The middle bytes are the Sysex messages contents.

CanCache Property Example

Channels Property Example

Clocks Property Example

Data1 and Data2 Properties Example
The following subroutine shows a sample MIDIInput_Message event handler.    All of the
available messages are read and output using the MIDI output control,    this provides a
MIDI-thru capability.

Sub MIDIInput1_Message()
Dim Message As Integer
Dim Data1 As Integer
Dim Data2 As Integer

Do While (MIDIInput1.MessageCount > 0)
'
'This is the incoming MIDI data
'
Message = MIDIInput1.Message
Data1 = MIDIInput1.Data1
Data2 = MIDIInput1.Data2
'
' Tell MIDIOutput1 to send the MIDI data
'
MIDIOutput1.Message = Message
MIDIOutput1.Data1 = Data1
MIDIOutput1.Data2 = Data2
MIDIOutput1.Action = MIDIOUT_SEND
'
' Remove the input message
'
MIDIInput1.Action = MIDIIN_REMOVE

Loop
End Sub

DeviceCount Property Example
This example shows how to load combo-boxes with lists of input devices and output
devices.

Sub Form_Load ()
Dim i As Integer

'
' Fill output device combo box
'
For i = -1 To MIDIOutput1.DeviceCount - 1

MIDIOutput1.DeviceID = i
OutputDevCombo.AddItem MIDIOutput1.ProductName

Next
'
' Select first in list
'
MIDIOutput1.DeviceID = -1
OutputDevCombo.ListIndex = 0
'
' Fill input device combo box
'
For i = 0 To MIDIInput1.DeviceCount - 1

MIDIInput1.DeviceID = i
InputDevCombo.AddItem MIDIInput1.ProductName

Next
'
' Select first in list
'
MIDIInput1.DeviceID = -1
InputDevCombo.ListIndex = 0

End Sub

DeviceID Property Example
This example shows how to load combo-boxes with lists of input devices and output
devices.

Sub Form_Load ()
Dim i As Integer

'
' Fill output device combo box
'
For i = -1 To MIDIOutput1.DeviceCount - 1

MIDIOutput1.DeviceID = i
OutputDevCombo.AddItem MIDIOutput1.ProductName

Next
'
' Select first in list
'
MIDIOutput1.DeviceID = -1
OutputDevCombo.ListIndex = 0
'
' Fill input device combo box
'
For i = 0 To MIDIInput1.DeviceCount - 1

MIDIInput1.DeviceID = i
InputDevCombo.AddItem MIDIInput1.ProductName

Next
'
' Select first in list
'
MIDIInput1.DeviceID = -1
InputDevCombo.ListIndex = 0

End Sub

DeviceType Property Example

DriverVersion Property Example

Filename Property Example
This example shows how to open a midi file.    First the CMDialog control is used for its
FileOpen Dialog capability, then the user-selected filename is put into the MIDI File control,
and finally the file is opened using the MIDI File controls Action property.

Sub FileOpen_Click ()
On Error Resume Next
CMDialog1.DialogTitle = "Open MIDI File"
CMDialog1.Flags = &H1000&
CMDialog1.Action = 1
If (Err) Then

Exit Sub
End If
MIDIFile1.Filename = CMDialog1.Filename
MIDIFile1.Action = MIDIFILE_OPEN

End Sub

Format Property Example

Frame Property Example

FrameRate Property Example

Gap Property Example
In this example, the program shows what happens when you vary the gap. To try this
example, paste the code into the Declarations section of a form that contains a horizontal
scroll bar, a label, and a horizontal slider control.    Press F5.    Play with the horizontal scroll
bar.

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 Label1.BackColor = &HC0C0C0
 Label1.Top = 240
 Label1.Left = 2840
 Label1.Height = 255

 HSlider1.Height = 1000
 HSlider1.Width = 2000

 HScroll1.Top = 240
 HScroll1.Left = 720
 HScroll1.Width = 2000
 HScroll1.Min = 0
 HScroll1.Max = 20
 HScroll1.Value = 2

 HSlider1.BevelOuter = 1
 HSlider1.BevelInner = 3
 HSlider1.TickMarks = 3
 HSlider1.TickCount = 11
 HSlider1.Height = 1000
 HSlider1.Width = 2000
 HSlider1.ThumbHeight = 360
 HSlider1.ThumbWidth = 120
 HSlider1.Gap = HScroll1.Value
 HSlider1.Value = 50
End Sub

Sub HScroll1_Change ()
 Call HScroll1_Scroll
End Sub

Sub HScroll1_Scroll ()
 HSlider1.Gap = HScroll1.Value
 Label1.Caption = "Gap: " & HScroll1.Value
End Sub

HasLRVolume Property Example
Sub CloseOutputDevice ()
'
' Restore volume before closing
'
If MIDIOutput1.State >= MIDISTATE_OPEN Then

If (MIDIOutput1.HasLRVolume) Then
MIDIOutput1.VolumeLeft = lVolume
MIDIOutput1.VolumeRight = rVolume

ElseIf (MIDIOutput1.HasVolume) Then
MIDIOutput1.VolumeLeft = lVolume

End If
'
' Close
'

MIDIOutput1.Action = MIDIOUT_CLOSE
End If

End Sub

HasVolume Property Example
Sub CloseOutputDevice ()
'
' Restore volume before closing
'
If MIDIOutput1.State >= MIDISTATE_OPEN Then

If (MIDIOutput1.HasLRVolume) Then
MIDIOutput1.VolumeLeft = lVolume
MIDIOutput1.VolumeRight = rVolume

ElseIf (MIDIOutput1.HasVolume) Then
MIDIOutput1.VolumeLeft = lVolume

End If
'
' Close
'

MIDIOutput1.Action = MIDIOUT_CLOSE
End If

End Sub

HMidiDevice Property Example

Hour Property Example

Indicator Properties Example
In this example, the program shows what happens when you change the look of the knob's
indicator. To try this example, paste the code into the Declarations section of a form that
contains a horizontal scroll bar, a label, two command buttons, a common dialog control,
and a knob.    Press F5.    Play with the scroll bar and the command buttons.

Sub Command1_Click ()
 Knob1.Indicator = 1 - Knob1.Indicator
End Sub

Sub Command2_Click ()
 CMDialog1.Color = Knob1.IndicatorColor
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 Knob1.IndicatorColor = CMDialog1.Color
End Sub

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 Command1.Caption = "Change Style"
 Command1.Top = 720
 Command1.Left = 240
 Command1.Width = 1800
 Command1.Height = 360

 Command2.Caption = "Change Color"
 Command2.Top = 1200
 Command2.Left = 240
 Command2.Width = 1800
 Command2.Height = 360

 Label1.BackColor = &HC0C0C0
 Label1.Top = 240
 Label1.Left = 2160
 Label1.Height = 255
 Label1.Width = 4000

 HScroll1.Top = 240
 HScroll1.Left = 240
 HScroll1.Width = 1800
 HScroll1.Min = 0
 HScroll1.Max = 20
 HScroll1.Value = 2

 Knob1.Top = 1680
 Knob1.Left = 240
 Knob1.Width = 1800
 Knob1.Height = 1800
 Knob1.Radius = 600
End Sub

Sub HScroll1_Change ()
 Call HScroll1_Scroll
End Sub

Sub HScroll1_Scroll ()
 Knob1.IndicatorWidth = HScroll1.Value
 Label1.Caption = "IndicatorWidth: " & HScroll1.Value
End Sub

ItemBackColor Property Example
In this example, the program shows what happens when you vary the gap. To try this
example, paste the code into the Declarations section of a form that contains a horizontal
scroll bar, a label, and a horizontal slider control.    Press F5.    Play with the horizontal scroll
bar.

Sub Command1_Click ()
 CMDialog1.Color = HIndicator1.ItemBackColor
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 HIndicator1.ItemBackColor = CMDialog1.Color
End Sub

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 Command1.Top = 240
 Command1.Left = 240
 Command1.Width = 1800
 Command1.Height = 360
 Command1.Caption = "Change Color"

 HIndicator1.Top = 720
 HIndicator1.Left = 240
 HIndicator1.Width = 3600
 HIndicator1.Height = 900
 HIndicator1.BevelInner = 3
 HIndicator1.BevelOuter = 1
 HIndicator1.BackColor = &HC0C0C0

 HIndicator1.ItemBackColor = &HC0C0C0
End Sub

ItemForeColor and ItemCount Properties Example
In this example, the program shows what happens when you vary the color and count of
the items in an indicator. To try this example, paste the code into the Declarations section
of a form that contains three horizontal scroll bars, three labels, three command buttons, a
common dialog box control, and a horizontal indicator control.    Press F5.    Play with the
command buttons and the scroll bars.

Sub Command1_Click ()
 CMDialog1.Color = HIndicator1.ItemForeColor1
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 HIndicator1.ItemForeColor1 = CMDialog1.Color
End Sub

Sub Command2_Click ()
 CMDialog1.Color = HIndicator1.ItemForeColor2
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 HIndicator1.ItemForeColor2 = CMDialog1.Color
End Sub

Sub Command3_Click ()
 CMDialog1.Color = HIndicator1.ItemForeColor3
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 HIndicator1.ItemForeColor3 = CMDialog1.Color
End Sub

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 HIndicator1.Top = 1680
 HIndicator1.Left = 240
 HIndicator1.Width = 6000
 HIndicator1.Height = 600
 HIndicator1.BevelInner = 3
 HIndicator1.BevelOuter = 1
 HIndicator1.Value = 100
 HIndicator1.BackColor = &HC0C0C0
 HIndicator1.ItemBackColor = &HC0C0C0

 Command1.Top = 240
 Command1.Left = 240
 Command1.Width = 1800
 Command1.Height = 360
 Command1.Caption = "Change Color 1"

 HScroll1.Top = 240
 HScroll1.Left = 2160
 HScroll1.Width = 900

 HScroll1.Min = 0
 HScroll1.Max = 20
 HScroll1.Value = HIndicator1.ItemCount1

 Label1.Top = 240
 Label1.Left = 3180
 Label1.Width = 2000
 Label1.BackColor = &HC0C0C0

 Command2.Top = 720
 Command2.Left = 240
 Command2.Width = 1800
 Command2.Height = 360
 Command2.Caption = "Change Color 2"

 HScroll2.Top = 720
 HScroll2.Left = 2160
 HScroll2.Width = 900
 HScroll2.Min = 0
 HScroll2.Max = 20
 HScroll2.Value = HIndicator1.ItemCount2

 Label2.Top = 720
 Label2.Left = 3180
 Label2.Width = 2000
 Label2.BackColor = &HC0C0C0

 Command3.Top = 1200
 Command3.Left = 240
 Command3.Width = 1800
 Command3.Height = 360
 Command3.Caption = "Change Color 3"

 HScroll3.Top = 1200
 HScroll3.Left = 2160
 HScroll3.Width = 900
 HScroll3.Min = 0
 HScroll3.Max = 20
 HScroll3.Value = HIndicator1.ItemCount3

 Label3.Top = 1200
 Label3.Left = 3180
 Label3.Width = 2000
 Label3.BackColor = &HC0C0C0
End Sub

Sub HScroll1_Change ()
 HIndicator1.ItemCount1 = HScroll1.Value
 Label1.Caption = "ItemCount1: " & HScroll1.Value
End Sub

Sub HScroll1_Scroll ()
 Call HScroll1_Change
End Sub

Sub HScroll2_Change ()
 HIndicator1.ItemCount2 = HScroll2.Value

 Label2.Caption = "ItemCount2: " & HScroll2.Value
End Sub

Sub HScroll2_Scroll ()
 Call HScroll2_Change
End Sub

Sub HScroll3_Change ()
 HIndicator1.ItemCount3 = HScroll3.Value
 Label3.Caption = "ItemCount3: " & HScroll3.Value
End Sub

Sub HScroll3_Scroll ()
 Call HScroll3_Change
End Sub

Knob Style Properties Example

Sub Command1_Click ()
 Knob1.KnobStyle = (Knob1.KnobStyle + 1) Mod 4
End Sub

Sub Command2_Click ()
 CMDialog1.Color = Knob1.KnobColor
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 Knob1.KnobColor = CMDialog1.Color
End Sub

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 Command1.Caption = "Change Style"
 Command1.Top = 720
 Command1.Left = 240
 Command1.Width = 1800
 Command1.Height = 360

 Command2.Caption = "Change Color"
 Command2.Top = 1200
 Command2.Left = 240
 Command2.Width = 1800
 Command2.Height = 360

 Knob1.Top = 1680
 Knob1.Left = 240
 Knob1.Width = 1800
 Knob1.Height = 1800
 Knob1.Radius = 600
End Sub

VolumeLeft Property Example
Sub CloseOutputDevice ()
'
' Restore volume before closing
'
If MIDIOutput1.State >= MIDISTATE_OPEN Then

If (MIDIOutput1.HasLRVolume) Then
MIDIOutput1.VolumeLeft = lVolume
MIDIOutput1.VolumeRight = rVolume

ElseIf (MIDIOutput1.HasVolume) Then
MIDIOutput1.VolumeLeft = lVolume

End If
'
' Close
'

MIDIOutput1.Action = MIDIOUT_CLOSE
End If

End Sub

ManufacturerID Property Example

Message Property Example
The following subroutine shows a sample MIDIInput_Message event handler.    All of the
available messages are read and output using the MIDI output control,    this provides a
MIDI-thru capability.

Sub MIDIInput1_Message()
Dim Message As Integer
Dim Data1 As Integer
Dim Data2 As Integer

Do While (MIDIInput1.MessageCount > 0)
'
'This is the incoming MIDI data
'
Message = MIDIInput1.Message
Data1 = MIDIInput1.Data1
Data2 = MIDIInput1.Data2
'
' Tell MIDIOutput1 to send the MIDI data
'
MIDIOutput1.Message = Message
MIDIOutput1.Data1 = Data1
MIDIOutput1.Data2 = Data2
MIDIOutput1.Action = MIDIOUT_SEND
'
' Remove the input message
'
MIDIInput1.Action = MIDIIN_REMOVE

Loop
End Sub

MessageCount Property Example
The following subroutine shows a sample MIDIInput_Message event handler.    All of the
available messages are read and output using the MIDI output control,    this provides a
MIDI-thru capability.

Sub MIDIInput1_Message()
Dim Message As Integer
Dim Data1 As Integer
Dim Data2 As Integer

Do While (MIDIInput1.MessageCount > 0)
'
'This is the incoming MIDI data
'
Message = MIDIInput1.Message
Data1 = MIDIInput1.Data1
Data2 = MIDIInput1.Data2
'
' Tell MIDIOutput1 to send the MIDI data
'
MIDIOutput1.Message = Message
MIDIOutput1.Data1 = Data1
MIDIOutput1.Data2 = Data2
MIDIOutput1.Action = MIDIOUT_SEND
'
' Remove the input message
'
MIDIInput1.Action = MIDIIN_REMOVE

Loop
End Sub

MessageEventEnable Property Example

MessageNumber Property Example
The following searches throught the messages in a track looking for a track name event.

Function GetTrackName (Track As Integer) As String
Dim i As Integer

MIDIFile1.TrackNumber = Track

For i = 1 To MIDIFile1.MessageCount
MIDIFile1.MessageNumber = i
'
'Meta Event
'
If (MIDIFile1.Message = 255) And MIDIFile1.Data1 = 3 Then

If (MIDIFile1.MsgText = "") Then
GetTrackName = "Track" & Str(Track) & " (null)"

Else
GetTrackName = MIDIFile1.MsgText

End If
Exit Function

End If
Next
GetTrackName = "Track" & Str(Track)

End Function

MessageTag Property Example
Sub MIDIOutput1_MessageSent (MessageTag As Long)
If (MessageTag = 1) Then

Shape1.Visible = True
Else

Shape1.Visible = False
End If

End Sub

Mi Property Example

MsgText Property Example
This example shows how to change the MsgText for the current message.

Sub CmdModifyMessage_Click ()
MIDIFile1.MsgText = MsgTextEdit.Text
MIDIFile1.Action = MIDIFILE_MODIFY_MESSAGE

End Sub

Notated32nds Property Example

Notes Property Example

NumberOfTracks Property Example
This example shows how to load track names into a list box.

Sub DisplayTrackList ()
Dim m As Integer
Dim t As Integer

TrackList.Clear
For t = 1 To MIDIFile1.NumberOfTracks

TrackList.AddItem GetTrackName(t)
If (t = 1) Then

msPerTick = ((MIDIFile1.Tempo) / 1000) /
MIDIFile1.TicksPerQuarterNote

ticksPerMs = (MIDIFile1.TicksPerQuarterNote / MIDIFile1.Tempo) * 1000
End If

Next
End Sub

Numerator Property Example

ProductID Property Example

ProductName Property Example
This example shows how to load combo-boxes with lists of input devices and output
devices.

Sub Form_Load ()
Dim i As Integer

'
' Fill output device combo box
'
For i = -1 To MIDIOutput1.DeviceCount - 1

MIDIOutput1.DeviceID = i
OutputDevCombo.AddItem MIDIOutput1.ProductName

Next
'
' Select first in list
'
MIDIOutput1.DeviceID = -1
OutputDevCombo.ListIndex = 0
'
' Fill input device combo box
'
For i = 0 To MIDIInput1.DeviceCount - 1

MIDIInput1.DeviceID = i
InputDevCombo.AddItem MIDIInput1.ProductName

Next
'
' Select first in list
'
MIDIInput1.DeviceID = -1
InputDevCombo.ListIndex = 0

End Sub

Radius Property Example
In this example, the program shows what happens when you vary the radius of a knob. To
try this example, paste the code into the Declarations section of a form that contains a
knob, a horizontal scroll bar, and a label control.    Press F5.    Play with the scroll bar.

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 HScroll1.Min = 100
 HScroll1.Max = 950
 HScroll1.Value = 200

 Knob1.Width = 2000
 Knob1.Height = 2000
 Knob1.Radius = HScroll1.Value

 Label1.Caption = Knob1.Radius
 Label1.BackColor = &HC0C0C0
End Sub

Sub HScroll1_Scroll ()
 Knob1.Radius = HScroll1.Value
 Label1.Caption = HScroll1.Value
End Sub

VolumeRight Property Example
Sub CloseOutputDevice ()
'
' Restore volume before closing
'
If MIDIOutput1.State >= MIDISTATE_OPEN Then

If (MIDIOutput1.HasLRVolume) Then
MIDIOutput1.VolumeLeft = lVolume
MIDIOutput1.VolumeRight = rVolume

ElseIf (MIDIOutput1.HasVolume) Then
MIDIOutput1.VolumeLeft = lVolume

End If
'
' Close
'

MIDIOutput1.Action = MIDIOUT_CLOSE
End If

End Sub

Sequence Property Example

Sequence Property Example

Sf Property Example

State Property Example
This example checks the MIDIOutput State property to see if the output device is open
before trying to close it.

Sub CloseOutputDevice ()
'
' Restore volume before closing
'
If MIDIOutput1.State >= MIDISTATE_OPEN Then

If (MIDIOutput1.HasLRVolume) Then
MIDIOutput1.VolumeLeft = lVolume
MIDIOutput1.VolumeRight = rVolume

ElseIf (MIDIOutput1.HasVolume) Then
MIDIOutput1.VolumeLeft = lVolume

End If
'
' Close
'
MIDIOutput1.Action = MIDIOUT_CLOSE

End If
End Sub

Tempo Property Example
This example shows how to locate a Tempo sysex event in a track and how to calculate
MillisecondsPerTick and TicksPerMillisecond..

Sub CalculateTimingValues(Track As Integer)
Dim m As Integer

MIDIFile1.TrackNumber = Track
For m = 1 To MIDIFile1.MessageCount

MIDIFile1.Message = m
If ((MIDIFile1.Message = &HFF) And (MIDIFile1.Message = &H51)) Then

msPerTick = ((MIDIFile1.Tempo) / 1000) /
MIDIFile1.TicksPerQuarterNote

ticksPerMs = (MIDIFile1.TicksPerQuarterNote / MIDIFile1.Tempo) * 1000
End If

Next
End Sub

ThumbHeight, ThumbStyle, and ThumbWidth Properties Example
In this example, the program shows what happens when you vary the size of the thumb. To
try this example, paste the code into the Declarations section of a form that contains a
horizontal slider, a horizontal scroll bar, a vertical scroll bar, a knob, and two label controls.
Press F5.    Play with the scroll bars and the knob.

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0
 Form1.Height = 4880
 Form1.Width = 4000

 Knob1.Left = 204
 Knob1.Top = 2400
 Knob1.Width = 3400
 Knob1.Height = 2000
 Knob1.Radius = 500
 Knob1.Min = 0
 Knob1.Max = 3
 Knob1.TickCount = 4
 Knob1.TickCaption(0) = "Normal"
 Knob1.TickCaption(1) = "Pointed Up"
 Knob1.TickCaption(2) = "Pointed Down"
 Knob1.TickCaption(3) = "Lined"

 Label1.BackColor = &HC0C0C0
 Label1.Top = 240
 Label1.Left = 2840
 Label1.Height = 255

 Label2.BackColor = &HC0C0C0
 Label2.Top = 1840
 Label2.Left = 240
 Label2.Height = 255

 HSlider1.Height = 1000
 HSlider1.Width = 2000

 HScroll1.Top = 240
 HScroll1.Left = 720
 HScroll1.Width = 2000
 HScroll1.Min = 90
 HScroll1.Max = 500
 HScroll1.Value = 120

 VScroll1.Top = 720
 VScroll1.Left = 240
 VScroll1.Height = 1000
 VScroll1.Min = 90
 VScroll1.Max = 500
 VScroll1.Value = 240

 HSlider1.Height = 1000
 HSlider1.Width = 2000

 HSlider1.ThumbHeight = VScroll1.Value
 HSlider1.ThumbWidth = HScroll1.Value
 HSlider1.Value = 50
End Sub

Sub HScroll1_Change ()
 Call HScroll1_Scroll
End Sub

Sub HScroll1_Scroll ()
 HSlider1.ThumbWidth = HScroll1.Value
 Label1.Caption = HScroll1.Value
End Sub

Sub Knob1_Change ()
 Call Knob1_Scroll
End Sub

Sub Knob1_Scroll ()
 HSlider1.ThumbStyle = Knob1.Value
End Sub

Sub VScroll1_Change ()
 Call VScroll1_Scroll
End Sub

Sub VScroll1_Scroll ()
 HSlider1.ThumbHeight = VScroll1.Value
 Label2.Caption = VScroll1.Value
End Sub

Tick Properties Example
In this example, the program shows what happens when you change the look of the tick
marks. To try this example, paste the code into the Declarations section of a form that
contains a horizontal slider, a knob, two command buttons, four horizontal scroll bars, four
labels, and a common dialog control.    Press F5.    Play with the scroll bars and the
command buttons.

Sub Command1_Click ()
 CMDialog1.Color = HSlider1.TickColor
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 HSlider1.TickColor = CMDialog1.Color
 Knob1.TickColor = CMDialog1.Color
End Sub

Sub Command2_Click ()
 CMDialog1.Color = Knob1.TickCaptionColor
 CMDialog1.Flags = 1
 CMDialog1.Action = 3

 Knob1.TickCaptionColor = CMDialog1.Color
End Sub

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 HSlider1.Top = 1680
 HSlider1.Left = 240
 HSlider1.Width = 6000
 HSlider1.Height = 600
 HSlider1.Value = 100
 HSlider1.BackColor = &HC0C0C0

 Knob1.Top = 2400
 Knob1.Left = 240
 Knob1.Width = 1800
 Knob1.Height = 1800
 Knob1.Radius = 400
 Knob1.TickCount = 5

 Command1.Top = 240
 Command1.Left = 240
 Command1.Width = 1800
 Command1.Height = 360
 Command1.Caption = "Change TickColor"

 Command2.Top = 720
 Command2.Left = 240
 Command2.Width = 1800
 Command2.Height = 360
 Command2.Caption = "Change TickCaptionColor"

 HScroll1.Top = 240
 HScroll1.Left = 2160
 HScroll1.Width = 900
 HScroll1.Min = 0
 HScroll1.Max = 20
 HScroll1.Value = Knob1.TickCount

 Label1.Top = 240
 Label1.Left = 3180
 Label1.Width = 2000
 Label1.BackColor = &HC0C0C0

 HScroll2.Top = 600
 HScroll2.Left = 2160
 HScroll2.Width = 900
 HScroll2.Min = 0
 HScroll2.Max = 20
 HScroll2.Value = Knob1.TickGap

 Label2.Top = 600
 Label2.Left = 3180
 Label2.Width = 2000
 Label2.BackColor = &HC0C0C0

 HScroll3.Top = 960
 HScroll3.Left = 2160
 HScroll3.Width = 900
 HScroll3.Min = 0
 HScroll3.Max = 20
 HScroll3.Value = Knob1.TickLength

 Label3.Top = 960
 Label3.Left = 3180
 Label3.Width = 2000
 Label3.BackColor = &HC0C0C0

 HScroll4.Top = 1320
 HScroll4.Left = 2160
 HScroll4.Width = 900
 HScroll4.Min = 0
 HScroll4.Max = 20
 HScroll4.Value = Knob1.TickWidth

 Label4.Top = 1320
 Label4.Left = 3180
 Label4.Width = 2000
 Label4.BackColor = &HC0C0C0
End Sub

Sub HScroll1_Change ()
 Dim I As Integer

 HSlider1.TickCount = HScroll1.Value
 Knob1.TickCount = HScroll1.Value
 Label1.Caption = "TickCount: " & HScroll1.Value

 For I = 0 To HScroll1.Value - 1

 Knob1.TickCaption(I) = Chr$(I + 65)
 Next I
End Sub

Sub HScroll1_Scroll ()
 Call HScroll1_Change
End Sub

Sub HScroll2_Change ()
 HSlider1.Gap = HScroll2.Value
 Knob1.TickGap = HScroll2.Value
 Label2.Caption = "TickGap: " & HScroll2.Value
End Sub

Sub HScroll2_Scroll ()
 Call HScroll2_Change
End Sub

Sub HScroll3_Change ()
 HSlider1.TickLength = HScroll3.Value
 Knob1.TickLength = HScroll3.Value
 Label3.Caption = "TickLength: " & HScroll3.Value
End Sub

Sub HScroll3_Scroll ()
 Call HScroll3_Change
End Sub

Sub HScroll4_Change ()
 HSlider1.TickWidth = HScroll4.Value
 Knob1.TickWidth = HScroll4.Value
 Label4.Caption = "TickWidth: " & HScroll4.Value
End Sub

Sub HScroll4_Scroll ()
 Call HScroll4_Change
End Sub

TicksPerFrame Property Example

TicksPerQuarterNote Property Example
This example shows how to locate a Tempo sysex event in a track and how to use
TicksPerQuarterNote to calculate MillisecondsPerTick and TicksPerMillisecond..

Sub CalculateTimingValues(Track As Integer)
Dim m As Integer

MIDIFile1.TrackNumber = Track
For m = 1 To MIDIFile1.MessageCount

MIDIFile1.Message = m
If ((MIDIFile1.Message = &HFF) And (MIDIFile1.Message = &H51)) Then

msPerTick = ((MIDIFile1.Tempo) / 1000) /
MIDIFile1.TicksPerQuarterNote

ticksPerMs = (MIDIFile1.TicksPerQuarterNote / MIDIFile1.Tempo) * 1000
End If

Next
End Sub

Time Property Example
This example shows how to change time for the current message.

Sub CmdModifyMessageTime_Click ()
MIDIFile1.Time = Val(TimeEdit.Text)
MIDIFile1.Action = MIDIFILE_MODIFY_MESSAGE

End Sub

TimeFormat Property Example

TrackBevel Property Example
In this example, the program shows what happens when you vary the track bevel. To try
this example, paste the code into the Declarations section of a form that contains a knob,
and a horizontal slider control.    Press F5.    Play with the knob.

Sub Form_Load ()
 Form1.BackColor = &HC0C0C0

 Knob1.Width = 3000
 Knob1.Height = 2000
 Knob1.Radius = 500
 Knob1.TickCount = 4
 Knob1.Min = 0
 Knob1.Max = 3
 Knob1.Value = 0
 Knob1.FontSize = 7
 Knob1.FontBold = False
 Knob1.FontName = "Arial"
 Knob1.FontSize = 7
 Knob1.TickCaption(0) = "Normal"
 Knob1.TickCaption(1) = "Raised"
 Knob1.TickCaption(2) = "Inset"
 Knob1.TickCaption(3) = "Lowered"

 HSlider1.TrackBevel = 0
 HSlider1.TrackWidth = 5
End Sub

Sub Knob1_Scroll ()
 HSlider1.TrackBevel = Knob1.Value
End Sub

TrackNumber Property Example
This example shows how to load track names into a list box.

Sub DisplayTrackList ()
Dim m As Integer
Dim t As Integer

TrackList.Clear
For t = 1 To MIDIFile1.NumberOfTracks

TrackList.AddItem GetTrackName(t)
If (t = 1) Then

msPerTick = ((MIDIFile1.Tempo) / 1000) /
MIDIFile1.TicksPerQuarterNote

ticksPerMs = (MIDIFile1.TicksPerQuarterNote / MIDIFile1.Tempo) * 1000
End If

Next
End Sub

TrackWidth Property Example
In this example, the program shows what happens when you vary the track width. To try
this example, paste the code into the Declarations section of a form that contains a label,
a vertical scroll bar, and a horizontal slider control.    Press F5.    Play with the scroll bar.

Sub Form_Load ()
 Label1.Caption = "0"

 HSlider1.TrackBevel = 3

 VScroll1.Min = 0
 VScroll1.Max = 20
End Sub

Sub VScroll1_Scroll ()
 Label1.Caption = VScroll1.Value
 HSlider1.TrackWidth = VScroll1.Value
End Sub

Voices Property Example

Change Event
See Also

Applies To
Horizontal Slider, Knob, Vertical Slider

Description
Occurs when the value has changed.

Syntax
Sub ctlname_Change ()

Remarks
This event occurs when the value of the control has changed (usually through user
interaction). When this event occurs, the control also updates the control specified by the
link properties.

See Also
Events:

Scroll
Properties:

LinkControl
LinkProperty
Value

Error Event
See Also Example

Applies To
MIDI file, MIDI input, MIDI output

Description
Fires when an error occurs.

Syntax
Sub ctlname_Error (Error As Integer, ErrorMessage As String)

Remarks
This event is fired whenever an error occurs.    Both an error code and a textual description
of the error are passed as arguments.
The argument Error holds the error number.
The argument ErrorMessage gives the error in string form.

See Also
Properties:

Action (MIDI File)
Action (MIDI Input)
Action (MIDI Output)

Message Event
See Also Example

Applies To
MIDI input

Description
Fires when a message is received.

Syntax
Sub ctlname_Message ()

Remarks
This event is fired whenever MIDI messages are available and MessageEventEnable is set
to True.

See Also
Properties:

Action (MIDI File)
Action (MIDI Input)
Action (MIDI Output)

MessageSent Event
See Also Example

Applies To
MIDI output

Description
Fires when a message is sent.

Syntax
Sub ctlname_MessageSent (MessageTag As Long)

Remarks
This event is fired what a tagged message has been sent to the MIDI channel.   
MessageTag identifies the message sent.

See Also
Properties:

Action (MIDI File)
Action (MIDI Input)
Action (MIDI Output)

QueueEmpty Event
See Also Example

Applies To
MIDI output

Description
Fires when the output queue becomes empty.

Syntax
Sub ctlname_QueueEmpty ()

Remarks
Fires when the output queue becomes empty.

See Also
Properties:

Action (MIDI File)
Action (MIDI Input)
Action (MIDI Output)

Scroll Event
See Also

Applies To
Horizontal Slider, Knob, Vertical Slider

Description
Occurs while a user changes the value.

Syntax
Sub ctlname_Scroll ()

Remarks
You can use this event to perform calculations or to manipulate controls that must be
coordinated with changes in these controls.    Use the Change event when you want an
update to occur after the change is complete.

See Also
Events:

Change
Properties:

Value

Timer Event
See Also Example

Applies To
MIDI output

Description
Fires when a timer expires.

Syntax
Sub ctlname_Timer ()

Remarks
Fires when a timer expires.

See Also
Properties:

Action (MIDI File)
Action (MIDI Input)
Action (MIDI Output)

Error Event Example
Sub MIDIOutput1_Error (ErrorCode As Integer, ErrorMessage As String)
 MsgBox ErrorMessage
End Sub

Error Event Example
Sub MIDIOutput1_Error (ErrorCode As Integer, ErrorMessage As String)
 MsgBox ErrorMessage
End Sub

Message Event Example
Sub MIDIInput1_Message ()
Dim InMessage As Integer
Dim InData1 As Integer
Dim InData2 As Integer
Dim Y As Integer

If (fGotFirst = False) Then
PreviousTime = MIDIInput1.Time
fGotFirst = True
fRecording = True

End If
'
'This do while loop allows you to take all the messages that are
'waiting in the message queue.
'
Do While MIDIInput1.MessageCount > 0

'
'This is the incoming MIDI data
'
InMessage = MIDIInput1.Message
InData1 = MIDIInput1.Data1
InData2 = MIDIInput1.Data2
'
' Copy input to output?
'
If (MidiThruCheck.Value) Then

'
'Tell MIDIOutput1 to send the MIDI data
'
MIDIOutput1.Message = InMessage
MIDIOutput1.Data1 = InData1
MIDIOutput1.Data2 = InData2
MIDIOutput1.Action = MIDIOUT_SEND

End If

If (InsertRecordingCheck.Value) Then
'
' Copy message parameters
'
MIDIFile1.Message = MIDIOutput1.Message
MIDIFile1.Data1 = MIDIOutput1.Data1
MIDIFile1.Data2 = MIDIOutput1.Data2
'
' Calculate time in ticks
'
CurrentTime = MIDIInput1.Time
MIDIFile1.Time = Int(CurrentTime - PreviousTime) * ticksPerMs
PreviousTime = CurrentTime
'
' insert message into MIDI file
'
MIDIFile1.Action = MIDIFILE_INSERT_MESSAGE

End If
'
'Remove the MIDI data from the MIDI IN queue
'
MIDIInput1.Action = MIDIIN_REMOVE

Loop
End Sub

MessageSent Event Example
Sub MIDIOutput1_MessageSent (MessageTag As Long)
If (MessageTag = 1) Then

Shape1.Visible = True
Else

Shape1.Visible = False
End If

End Sub

Timer Event Example
Sub MIDIOutput1_Timer (TimerTag As Long)
If (TimerTag = 1) Then

Shape1.Visible = True
Else

Shape1.Visible = False
End If

End Sub

